0 Views

Xilinx, Inc. history, profile and corporate video

Xilinx, Inc. designs, develops and markets programmable devices and associated technologies, including: integrated circuits in the form of programmable logic devices, including programmable System on Chips and three dimensional ICs, or 3D ICs, software design tools to program the PLDs, targeted reference designs, printed circuit boards and intellectual property, which consists of Xilinx and various third-party verification and IP cores. The company in addition to its programmable platforms, it also provides design services, customer training, field engineering and technical support. Xilinx was founded in February 1984 and is headquartered in San Jose, CA.

“Xilinx History

Early days

Ross Freeman, Bernard Vonderschmitt, and James V Barnett II, who all had worked for integrated circuit and solid-state device manufacturer Zilog Corp, founded Xilinx in 1984.

While working for Zilog, Freeman wanted to create chips that acted like a blank tape, allowing users to program the technology themselves. At the time, the concept was paradigm-changing. “The concept required lots of transistors and, at that time, transistors were considered extremely precious – people thought that Ross’s idea was pretty far out”, said Xilinx Fellow Bill Carter, who when hired in 1984 as the first IC designer was Xilinx’s eighth employee.

Big semiconductor manufacturers were enjoying strong profits by producing massive volumes of generic circuits. Designing and manufacturing dozens of different circuits for specific markets offered lower profit margins and required greater manufacturing complexity. What became known as the FPGA would allow circuits produced in quantity to be tailored by individual market segments.

Freeman failed to convince Zilog to invest in creating the FPGA to chase what was only a $100 million market at the time.Freeman and Barnett left Zilog and teamed up with their 60-year-old ex-colleague Bernard Vonderschmitt to raise $4.5 million in venture funding to design the first commercially-viable FPGA. They incorporated the company in 1984 and began selling its first product by 1985.

By late 1987 the company had raised more than $18 million in venture capital (worth approximately $37 million in 2014 dollars adjusted for inflation) and generated revenues at an annualized rate of nearly $14 million.

Growth

As demand for programmable logic continued to grow, so did Xilinx’s revenues and profits.

From 1988 to 1990, the company’s revenue grew each year from $30 million to $50 million to $100 million. During this time period, the company which had been providing funding to Xilinx, Monolithic Memories Inc. (MMI), was purchased by Xilinx competitor AMD. As a result, Xilinx dissolved the deal with MMI and went public on the NASDAQ in 1989. The company also moved to a 144,000-square-foot (13,400 m2) plant in San Jose, California in order to keep pace with demand from companies like HP, Apple Inc., IBMand Sun Microsystems who were buying large quantities from Xilinx.

Xilinx competitors emerged in the FPGA market in the mid-1990s. Despite the competition, Xilinx’s sales grew to $135 million in 1991, $178 million in 1992 and $250 million in 1993.

The company reached $550 million in revenue in 1995, one decade after having sold its first product.

According to market research firm iSuppli, Xilinx has held the lead in programmable logic device market share since the late 1990s. Over the years, Xilinx expanded operations toIndia, Asia and Europe.

Xilinx’s sales rose from $560 million in 1996 to $2.2 billion by the end of its fiscal year 2013. Moshe Gavrielov – an EDA and ASIC industry veteran who was appointed as president and CEO in early 2008 – introduced targeted design platforms to provide solutions that combine FPGAs with software, IP cores, boards and kits to address focused target applications. These targeted design platforms are an alternative to costly application-specific integrated circuits (ASICs) and application-specific standard products (ASSPs).

Today

The company has expanded its product portfolio since its founding. Xilinx sells a broad range of FPGAs, complex programmable logic devices (CPLDs), design tools, intellectual property and reference designs. Xilinx also has a global services and training program.

After using the introduction of 3D chips to deliver more powerful FPGAs, Xilinx then adapted the technology to combine formerly separate components in a single chip, first combining an FPGA with transceivers to boost bandwidth capacity while using less power. According to Xilinx CEO Moshe Gavrielov, the addition of a heterogeneous communications device, combined with the introduction of new software tools and the Zynq-7000 line of 28 nm SoC devices that combine an ARM core with an FPGA, are part of shifting its position from a programmable logic device supplier to one delivering “all things programmable”.

The company’s products have been recognized by EE Times, EDN and others for innovation and market impact.

In addition to Zynq-7000, Xilinx product lines (see Current Family Lines) include the Virtex, Kintex and Artix series, each including configurations and models optimized for different applications. With the introduction of the Xilinx 7 series in June, 2010, the company has moved to three major FPGA product families, the high-end Virtex, the mid-range Kintex family and the low-cost Artix family, retiring the Spartan brand, which ends with the Xilinx Series 6 FPGAs. In April 2012, the company introduced the Vivado Design Suite – a next-generation SoC-strength design environment for advanced electronic system designs. In May, 2014, the company shipped the first of the next generation FPGAs: the 20 nm UltraScale.

Technology

Xilinx designs, develops and markets programmable logic products, including integrated circuits (ICs), software design tools, predefined system functions delivered as intellectual property (IP) cores, design services, customer training, field engineering and technical support.Xilinx sells both FPGAs and CPLDs for electronic equipment manufacturers in end markets such as communications, industrial, consumer,automotive and data processing.

Xilinx’s FPGAs have been used for the ALICE (A Large Ion Collider Experiment) at the CERN European laboratory on the French-Swissborder to map and disentangle the trajectories of thousands of subatomic particles. Xilinx has also engaged in a partnership with the United States Air Force Research Laboratory’s Space Vehicles Directorate to develop FPGAs to withstand the damaging effects of radiation in space, which are 1,000 times less sensitive to space radiation than the commercial equivalent, for deployment in new satellites.

The Virtex-II Pro, Virtex-4, Virtex-5, and Virtex-6 FPGA families, which include up to two embedded IBM PowerPC cores, are targeted to the needs of system-on-chip (SoC) designers.

Xilinx FPGAs can run a regular embedded OS (such as Linux or vxWorks) and can implement processor peripherals in programmable logic.

Xilinx’s IP cores include IP for simple functions (BCD encoders, counters, etc.), for domain specific cores (digital signal processing, FFTand FIR cores) to complex systems (multi-gigabit networking cores, the MicroBlaze soft microprocessor and the compact Picoblaze microcontroller). Xilinx also creates custom cores for a fee.

The main design toolkit Xilinx provides engineers is the Vivado Design Suite, an integrated design environment (IDE) with a system-to-IC level tools built on a shared scalable data model and a common debug environment. Vivado includes electronic system level (ESL) design tools for synthesizing and verifying C-based algorithmic IP; standards based packaging of both algorithmic and RTL IP for reuse; standards based IP stitching and systems integration of all types of system building blocks; and the verification of blocks and systems. A free version WebPACK Edition of Vivado provides designers with a limited version of the design environment.

Xilinx’s Embedded Developer’s Kit (EDK) supports the embedded PowerPC 405 and 440 cores (in Virtex-II Pro and some Virtex-4 and -5 chips) and the Microblaze core. Xilinx’s System Generator for DSP implements DSP designs on Xilinx FPGAs. A freeware version of its EDA software called ISE WebPACK is used with some of its non-high-performance chips. Xilinx is the only (as of 2007) FPGA vendor to distribute a native Linux freeware synthesis toolchain.

Xilinx announced the architecture for a new ARM Cortex A9-based platform for embedded systems designers, that combines the software programmability of an embedded processor with the hardware flexibility of an FPGA. The new architecture abstracts much of the hardware burden away from the embedded software developers’ point of view, giving them an unprecedented level of control in the development process. With this platform, software developers can leverage their existing system code based on ARM technology and utilize vast off-the-shelf open-source and commercially available software component libraries. Because the system boots an OS at reset, software development can get under way quickly within familiar development and debug environments using tools such as ARM’s RealView development suite and related third-party tools, Eclipse-based IDEs, GNU, the Xilinx Software Development Kit and others. In early 2011, Xilinx began shipping a new device family based on this architecture. The Zynq-7000 SoC platform immerses ARM multi-cores, programmable logic fabric, DSP data paths, memories and I/O functions in a dense and configurable mesh of interconnect. The platform targets embedded designers working on market applications that require multi-functionality and real-time responsiveness, such as automotive driver assistance, intelligent video surveillance, industrial automation, aerospace and defense, and next-generation wireless.

Following the introduction of its 28 nm 7-series FPGAs, Xilinx revealed that several of the highest-density parts in those FPGA product lines will be constructed using multiple dies in one package, employing technology developed for 3D construction and stacked-die assemblies. The company’s stacked silicon interconnect (SSI) technology stacks several (three or four) active FPGA dies side-by-side on a silicon interposer – a single piece of silicon that carries passive interconnect. The individual FPGA dies are conventional, and are flip-chip mounted by microbumps on to the interposer. The interposer provides direct interconnect between the FPGA dies, with no need for transceiver technologies such as high-speed SERDES. In October 2011, Xilinx shipped the first FPGA to use the new technology, the Virtex-7 2000T FPGA, which includes 6.8 billion transistors and 20 million ASIC gates. The following spring, Xilinx used the 3D technology to ship the Virtex-7 HT, the industry’s first heterogeneous FPGAs, which combine high bandwidth FPGAs with up to sixteen 28 Gbit/s and seventy-two 13.1 Gbit/s transceivers to reduce power and size requirements for key Nx100G and 400G line card applications and functions.

In January 2011, Xilinx acquired design tool firm AutoESL Design Technologies and added System C high-level design for its 6- and 7-series FPGA families. The addition of AutoESL tools extends the design community for FPGAs to designers more accustomed to designing at a higher level of abstraction using C, C++ and System C.

In April 2012, Xilinx introduced a redesign of its toolset for programmable systems, called Vivado Design Suite. This IP and system-centric design software supports newer high capacity devices, and speeds the design of programmable logic and I/O. Vivado provides faster integration and implementation for programmable systems into devices with 3D stacked silicon interconnect technology, ARM processing systems, analog mixed signal (AMS), and many semiconductor intellectual property (IP) cores.”

*Information from Forbes.com and Wikipedia.org

**Video published on YouTube by “XilinxInc .